

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 <script>
export default {

	mounted () {
	this.$router.push(‘/getting_started/introduction’)

}

}
</script>

 # Setup

Maven

TODO

 # What Can You Do?

PathFinder offers a quite extensive API. Not by using a Java interface, but
by directly addressing the corresponding singletons and calling their methods directly.

Volatile Runtime-Only Context

In contrast to the persistent data explained later, volatile data
only exists until the plugin is disabled.

Why is this useful?

For example, you could want to implement a maze minigame that includes shortest paths.
You would want to generate a roadmap that disappears as soon as the minigame is over or
the plugin stopped. Your plugin or the PathFinder plugin.

Therefore, you can create Roadmaps, Nodes, Edges, Groups and Visualizers that do not
exist in the database. You can disallow administrators to edit them via edit mode or use commands
to manipulate them.

With this, your data belongs only to you and your minigame and no one can manipulate it except from
other plugins via API. And this is why you should always make sure to only work with data of your own extension
(which is recognizable via NamespacedKey) and don’t mess with other extensions data.

::: tip TL;DR
Data that is not stored in database and gone once the server stops.
Don’t mess with other devs data, for example don’t iterate over all roadmaps.
Instead, use your plugin namespace to recognize your data.
::

Roadmaps

Nodes, Edges and Groups

Nodes

Persistent Context

Roadmaps

Nodes, Edges and Groups

Visualizers

Complex Search Terms

New Node-Types

New Visualizer-Types

 # Command Overview

Administrative

/roadmap

/waypoint

/nodegroup

/pathvisualizer

For Player Usage

/find

/cancelpath

 <script>
export default {

	mounted () {
	this.$router.push(‘/commands/’)

}

}
</script>

 # Cancelpath Command

This is a short one - the command does no more than the name says :D
It cancels the currently active path of a player.

	<CmdLine>
	/cancelpath

</CmdLine>

::: tip
If the command doesn’t appear in your game it means that you have no active path.
The command gets enabled everytime you start a path visualization and disabled once you cancelled or completed it.
::

 # Find Command

The find command is the heart of the plugin. It allows you to query a “shortest path search” to a certain location.

Structure

The usage of the command is quite simple.

`/find <target>`

`/find parking_lot`

`/find home`

The definition of the target might not, if not searching for a single target.

`/find parking_lot&towncenter&shop[sells=diamond]|chestshop[sells=diamond,sell-price>=15]`

You can use the query language to give an exact definition of your target location.

Query Language

 # Find Command

Find a certain location within reach of your graph.
See [the configuration](configuration/config.html#find-location) to define a maximum distance.

<PermissionBadge permission=”pathfinder.command.findlocation”></PermissionBadge>
<CmdLine>

/findlocation
<CmdArg :index=”0” type=”location”></CmdArg>

</CmdLine>

 # Pathfinder Command

Plugin Info

/pathfinder info

Prints some information about your current running version.

::: tip
It is advised to check that you are running the latest version of PathFinder before reporting bugs.
::

Help

/pathfinder help

Gives you a short instruction on how to use the plugin. For a more detailed overview check out the [Concept Section](/concept) of this wiki.

—

Data Export

/pathfinder export <database-type> [<params>]

Allows you to export specified plugin data into other files. This can be useful to create backups or to share selected elements of your pathfinder plugin with friends.

For example, you may want to share a certain particle visualizer that you have created. Even if you are using sql databases you can easily create ymls of your visualizers to send them to friends or upload them, like I do within the [Examples Section](/not there yet).

—

Data Import

/pathfinder import <type> <source>

For now, there is only one type available. It allows you to copy visualizers from GitHub and load them live.
Again, check out the [Examples Section](/wip) for more information.

:::tip Info
Later, this command is supposed to import all data types from all storage types. It’s an easy way of restoring or sharing data.
::

Reload

<CmdLine>

/pathfinder reload
<CmdArg type=”literal” optional label=”language | config | effects”></CmdArg>

</CmdLine>

Reload either your languages files, your config file, your effects file or all three of them if no parameter is given.
This command is meant for changes in these files so that you don’t have to frequently restart your server. Keep in mind though that not all
config fields may be supported.

 # Roadmap Command

Create a Roadmap

<PermissionBadge permission=”pathfinder.command.roadmap.create”></PermissionBadge>
<CmdLine>

/rm create
<CmdArg :index=”0” type=”nskey” label=”key”></CmdArg>

</CmdLine>

Creates a roadmap object with the given key. Don’t add the namespace (‘pathfinder:’), it will be inserted automatically.
This name is not visible to players. The name that is visible to players can be set lateron.

—

Delete a Roadmap

<PermissionBadge permission=”pathfinder.command.roadmap.delete”></PermissionBadge>
<CmdLine>

/rm delete
<CmdArg :index=”0” type=”roadmap”></CmdArg>

</CmdLine>

Deletes the provided roadmap and all corresponding waypoints, edges and meta data.

—

Show Roadmap Infos

<PermissionBadge permission=”pathfinder.command.roadmap.info”></PermissionBadge>
<CmdLine>

/rm info
<CmdArg :index=”0” type=”roadmap”></CmdArg>

</CmdLine>

Shows all kinds of information about the provided roadmap.

—

Toggle Editmode

<PermissionBadge permission=”pathfinder.command.roadmap.editmode”></PermissionBadge>
<CmdLine>

/rm editmode
<CmdArg :index=”0” type=”roadmap”></CmdArg>

</CmdLine>

Toggles the edit mode for this roadmap. The edit mode allows you to interactively modify your roadmap.
To understand all features, make sure to also read about [Using the Edit Mode](#).

—

List all Roadmaps

<PermissionBadge permission=”pathfinder.command.roadmap.list”></PermissionBadge>
<CmdLine>

/rm list
<CmdArg :index=”0” type=”number” optional label=”page”></CmdArg>

</CmdLine>

Lists all roadmaps with up to ten roadmaps on one page. Provide a page parameter to turn pages.

—

Force Find Nodes

<PermissionBadge permission=”pathfinder.command.roadmap.forcefind”></PermissionBadge>
<CmdLine>

/rm forcefind
<CmdArg :index=”0” type=”player”></CmdArg>
<CmdArg :index=”1” type=”discoverable”></CmdArg>

</CmdLine>

Makes a certain player find all provided discoverables. Discoverables, like also explained [here](#), resemble all node
groups that can be discovered.
This does not make the player navigate to a certain target. This command is used to make the player discover
locations, so that he then can find them via /find, if discovering is a precondition for navigation.

—

Force Forget Nodes

<PermissionBadge permission=”pathfinder.command.roadmap.forceforget”></PermissionBadge>
<CmdLine>

/rm forceforget
<CmdArg :index=”0” type=”player”></CmdArg>
<CmdArg :index=”1” type=”discoverable”></CmdArg>

</CmdLine>

Makes a certain player forget all provided discoverables. Also read [Force Find Nodes](./#force-find-nodes) for more
information.

—

Set Name

<PermissionBadge permission=”pathfinder.command.roadmap.set_name”></PermissionBadge>
<CmdLine>

/rm edit
<CmdArg :index=”0” type=”roadmap”></CmdArg>
set name
<CmdArg :index=”1” type=”mm”></CmdArg>

</CmdLine>

Sets the name of the roadmap that can also be visible to players (depending on your configuration).
The name can also be formatted to show colors, text formattings, hover texts and perform click actions. To do so, you
must use the [MiniMessage Format](https://docs.adventure.kyori.net/minimessage/format.html).

::: tip
Pathfinder adds some custom tags to its minimessage instance. Check out [this site]() for more information.
::

Set Visualizer

<PermissionBadge permission=”pathfinder.command.roadmap.set_visualizer”></PermissionBadge>
<CmdLine>

/rm edit
<CmdArg :index=”0” type=”roadmap”></CmdArg>
set visualizer
<CmdArg :index=”1” type=”vis”></CmdArg>

</CmdLine>

Sets the path visualizer for this roadmap. By default, every navigation on this roadmap will be displayed with the
provided visualizer. Depending on your configuration, players might be able to override this visualizer with their own
settings.

—

Set Curve-Length

<PermissionBadge permission=”pathfinder.command.roadmap.set_curve_length”></PermissionBadge>
<CmdLine>

/rm edit
<CmdArg :index=”0” type=”roadmap”></CmdArg>
set visualizer
<CmdArg :index=”1” type=”float”></CmdArg>

</CmdLine>

Sets the default curve length for this roadmap. The curve length can be used by the path visualizer as property to
smoothen the path.
The default curve length will only be used, if a node has not set a custom curve length. The value tells, how far the
so-called tangent points of the Bézier curve will be away from their waypoint in blocks.
Therefore, a smaller value will make the path pointier while larger values will make it more curved.

 <script>
export default {

	mounted () {
	this.$router.push(‘/commands/’)

}

}
</script>

 # Waypoint Command

Waypoint Selector

The waypoint selector works like all vanilla selectors.
You use the format @n[here come conditions], where your conditions decide
which nodes to select.
An example would be @n[id=2] or @n[distance=..3].

::: tip
Minecraft is by now (1.19.3) not capable of handling proper customized arguments.
Therefore, all waypoint selectors must be in quotes.
@n[distance=..3] must therefore be “@n[distance=..3]”

Annoying? Yeah, I think so too :P I made
a [feature request](https://feedback.minecraft.net/hc/en-us/community/posts/8241302508941-Custom-Arguments-for-Plugin-Development)
and maybe one day
we will finally have proper command arguments!
::

Possible Conditions:

Condition | Values | Description | Example
— |-------------|—————————————————| —
ID | NumberRange | Database ID of nodes, every node has a unique ID. | 1..2, 1, -10..
Offset | Number | Does not filter nodes, only removes a leading amount of nodes from the selection | 1, 2, 10
Limit | Number | Does not filter nodes, only limits the selection to a certain amount of nodes | 1, 5, 10
Distance | NumberRange | Filters nodes by distance to the executor | ..10, 3
Curvelength | NumberRange | Filters nodes by their curvelength | ..10, 3
Sort | nearest, furthest, random, arbitrary | Sorts the selection by the given type.
World | World | Filter nodes by their locations world | world, hogwarts
RoadMap | NamespacedKey | Filter nodes by their according roadmap | pathfinder:roadmap
Group | NamespacedKey | Filter nodes by their according groups | pathfinder:third_floor

Subcommands

Show Waypoint Info

<PermissionBadge permission=”pathfinder.command.waypoint.info”></PermissionBadge>
<CmdLine>

/wp info
<CmdArg :index=”0” type=”nodes”></CmdArg>

</CmdLine>

Shows some information on the given waypoint. Use a waypoint selector, but
make sure to only select one node. Otherwise a list will be shown. Click a
waypoint in the list to show its details.

—

List Waypoints

<PermissionBadge permission=”pathfinder.command.waypoint.list”></PermissionBadge>
<CmdLine>

/wp list
<CmdArg :index=”0” type=”nodes”></CmdArg>

</CmdLine>

Lists all described waypoints. Use a waypoint selector to describe your selection.
Use “@n” to show all nodes from all roadmaps. Click an entry to view its details.

—

Create Waypoints

<PermissionBadge permission=”pathfinder.command.waypoint.create”></PermissionBadge>
<CmdLine>

/wp create
<CmdArg :index=”0” type=”roadmap”></CmdArg>
<CmdArg :index=”1” type=”node-type” optional></CmdArg>
<CmdArg :index=”2” type=”location” optional></CmdArg>

</CmdLine>

Create a new waypoint. Supply a roadmap, because every waypoint has to be part
of one roadmap. Optionally, you can specify a node type. In most cases, your server
will have only one node type, which is the default type provided by the PathFinder plugin
itself. Other plugins can register new node types, like a shop node if you want to
navigate to shops within your roadmap.
Also, you may want to provide x, y and z coordinates, otherwise the players position
will be used.

—

Delete Waypoints

<PermissionBadge permission=”pathfinder.command.waypoint.delete”></PermissionBadge>
<CmdLine>

/wp delete
<CmdArg :index=”0” type=”nodes”></CmdArg>

</CmdLine>

Deletes all specified nodes. Be careful with this one!
/wp delete “@n” will delete EVERY SINGLE NODE from EVERY roadmap on the
server. Which might not be what you were aiming for.

—

Teleport Waypoints

<PermissionBadge permission=”pathfinder.command.waypoint.tp”></PermissionBadge>
<CmdLine>

/wp tp
<CmdArg :index=”0” type=”nodes”></CmdArg>
<CmdArg :index=”1” type=”location”></CmdArg>

</CmdLine>

Teleport a selection of waypoints to a certain location.

<PermissionBadge permission=”pathfinder.command.waypoint.tphere”></PermissionBadge>
<CmdLine>
/wp tphere
<CmdArg :index=”0” type=”nodes”></CmdArg>
</CmdLine>

Teleport a selection of waypoints to your current location.

—

Connect Waypoints with Edges

<PermissionBadge permission=”pathfinder.command.waypoint.connect”></PermissionBadge>
<CmdLine>

/wp connect
<CmdArg :index=”0” type=”nodes” label=”from”></CmdArg>
<CmdArg :index=”1” type=”nodes” label=”to”></CmdArg>

</CmdLine>

Connects a selection of waypoints with a selection of other waypoints.
This means, that every single waypoint from the first selection will become
connected to every single waypoint from the second selection.
10 waypoints in the first and 10 in the second will make 100 edges! Keep in mind.

If the selections overlap, bidirectional edges will be created, meaning that
a connection in both directions is being established.

<CmdLine>

/wp connect
<CmdArg :index=”0” type=”example” label=’”@n[id=1..3]”’></CmdArg>
<CmdArg :index=”1” type=”example” label=’”@n[id=2..4]”’></CmdArg>

</CmdLine>

`
1 -> 2
1 -> 3
1 -> 4
2 -> 2 X
2 <-> 3
2 -> 4
3 -> 3 X
3 -> 4
`

—

Disconnect Edges

<PermissionBadge permission=”pathfinder.command.waypoint.disconnect”></PermissionBadge>
<CmdLine>

/wp disconnect
<CmdArg :index=”0” type=”nodes” label=”from”></CmdArg>
<CmdArg :index=”1” type=”nodes” label=”to”></CmdArg>

</CmdLine>

Disconnects a selection of nodes from another selection of nodes.
It works exactly like the connect command but in reverse, read about connect
for further information.

—

Set Curve Length

<PermissionBadge permission=”pathfinder.command.waypoint.info”></PermissionBadge>
<CmdLine>

/wp edit
<CmdArg :index=”0” type=”nodes”></CmdArg>
curve-length
<CmdArg :index=”1” type=”number”></CmdArg>

</CmdLine>

TODO

—

Modifying Groups

<PermissionBadge permission=”pathfinder.command.waypoint.add_group”></PermissionBadge>
<CmdLine>

/wp edit
<CmdArg :index=”0” type=”nodes”></CmdArg>
addgroup
<CmdArg :index=”1” type=”nodegroup”></CmdArg>

</CmdLine>

<PermissionBadge permission=”pathfinder.command.waypoint.remove_group”></PermissionBadge>
<CmdLine>

/wp edit
<CmdArg :index=”0” type=”nodes”></CmdArg>
removegroup
<CmdArg :index=”1” type=”nodegroup”></CmdArg>

</CmdLine>

<PermissionBadge permission=”pathfinder.command.waypoint.clear_groups”></PermissionBadge>
<CmdLine>

/wp edit
<CmdArg :index=”0” type=”nodes”></CmdArg>
cleargroups

</CmdLine>

Allows you to modify the node groups of a selection of waypoints.
Groups apply different behaviours to waypoints and waypoints can be in multiple groups
that are not being restricted to roadmaps.

Read about [Nodegroups](https://docs.leonardbausenwein.de/concept/nodegroups.html) for more information

 <script>
export default {

	mounted () {
	this.$router.push(‘/concept/roadmaps’)

}

}
</script>

 # Nodegroups

What are they?

Nodegroups are a way of adding node behaviour to multiple nodes.
This can mean permission restriction, search terms, findability, discoverability and
everything else I and writers of Addons might find interesting :D

They are not directly visible to players and simply a way of simplifying things.
If you had added all search terms for let’s say a restroom to every node in this restroom.
But then you realise that you wrote “toliet” instead of “toilet” as search term, you’d have to
modify every single node manually. Nodegroups speed things up with references. All nodes of the restroom
are in a nodegroup called “RestRoom” and then you can modify the search terms of the group and fix spelling mistakes and
the changes immediately affect all nodes within this group.

Nodegroups do not require to have more than one node. If one specific behaviour should only apply to one specific node
you may want to consider a nodegroup only for this specific node.

On the other hand, nodegroups can contain only contain selected behaviours like a permission node to restrict
them to certain players. Then you can easily combine the groups on one node to archieve the same behaviour

What can they do

Display Name

It’s not actually something they can do, but the display name property is used
for discoveries.

Permission Restriction

You can specify a permission node. Players can only find paths across nodes of this
group if they have the according permissions.

Search Terms

You can specify a set of strings as search terms. Search terms serve as a way to filter the nodes of the graph
to only those nodes of interest. For example, the search term “toilet” would return all
nodes that are in a group with a search term of name “toilet”.

Search terms can then be used in a more complex syntax, like “toilet&!(public|restaurant)”,
which can be understood as follows:
- “toilet” -> obviously means we’re searching for a toilet
- “&” -> but all toilets have to match the following conditions:
- “!” -> The opposite of what follows
- “(” -> & (and) binds stronger than | (or), why we have to use brackets like in maths with + and *.
- “public” -> only public restrooms
- “|” -> or
- “restaurant” -> restaurant restrooms
- “)”

So a bit more combined:
- “toilet&” -> a toilet that
- “!” -> is not
- “(public | restaurant)” public or in a restaurant.

So we are actually searching for a toilet that is not public or in a restaurant,
or in other words not public and not in a restaurant.

Once you get the hang of it and realize it’s just like the oh beloved maths you’ll be fine :D
And if not, you still can walk to all nearest toilets and check out if they are public or in a restaurant.

Navigability

The search terms of the previous section require the node to be navigable. This means, that
the player is allowed to actively find nodes of this group by their search terms.

Later, this concept might also include passive navigability, meaning that you can not find a certain search term but use it
to specify your search.

Example:
- “toilet” is an active search term.
- “public” is a passive search term.

This leads to:
“/find location toilet” -> valid
“/find location public” -> invalid
“/find location toilet&!public” -> valid

In words, your query has to contain at least one active search term.

But this is future yet, feel free to give me some feedback if this feature would be
interesting to you.

Discoverability

Discoverability decides, if your group can be discovered and shows a title / plays a sound or not.
You can also specify, if groups have to be discovered to be navigable.

Find Distance

The find distance of your group. It is the radius in blocks that the player have as distance to the node
before he or she discovers or reaches the node.

 # What are Roadmaps?

The Roadmap Object

In terms of this pathfinder plugin, a roadmap resembles all waypoints, connecting roads and meta information of one
scope. In case of a roleplay map, this might be the whole world. Otherwise, a spawn town, tutorial world or maze would
be fitting.
It is the job of the roadmap to bundle the information and make it accessible to administrators and players.

Namespaces and Namespaced Keys

All roadmaps are identified by a unique Namespaced Key. This is a format that minecraft uses in many places, like with
materials: minecraft:diamond
Roadmaps usually have a key that starts with the namespace ‘pathfinder’ and finishes with a custom name, given by the
creator, like pathfinder:my_town
To assure that addons for the pathfinder plugin don’t conflict with your existing data, they have to register
dynamically created roadmaps with their own namespace. So the namespace can be used to identify which addon created a
roadmap.

::: warning
Choose the key of your roadmap carefully, it cannot be changed later on.
It will not be visible to players.
::

Graphs

As mentioned, a roadmap represents a graph. A graph is a collection of waypoints (nodes) and edges that are connecting
the nodes. Edges can be directed (one way) or undirected (both directions possible) and weighted (the costs factor if
this road, e.g. resembling steepness or vehicle type). The weight is multiplied with the length of the road.

To set up your roadmap, you want to create mentioned nodes for each corner or crossing of your map and connect them
with roads (edges) of the according direction and weight. Players can later search for keywords that are associated with
certain nodes and the plugin can calculate the absolute shortest path from the players position to the target node.

Of course, this shortest path can be visualized with particles and entities.

Nodes

Nodes are, as mentioned, the basis of the graph. By themselves they cannot do much. They have
- an autogenerated numeric ID.
- a location value that tells, where in the 3D world of Minecraft they are. This can vary over time, but visualized graphs are static and will not updated once generated.
- one according roadmap. Its 1 to n, each node can only be part of one roadmap.
- an unlimited amount of edges to other nodes (not including itself)
- an unlimited amount of nodegroups, which add behaviour to nodes.
- a curve length attribute to specify the roundness of a possible path at the position of this node.

Check out the [next section](/concept/nodegroups) to learn more about nodegroups and the behaviour they can add to nodes.

 <script>
export default {

	mounted () {
	this.$router.push(‘/configuration/config’)

}

}
</script>

 # Configuration

Language

Client Language

```yml
language:


client-language: false




```

If this setting is set to true, a players preferred language will be his or her client language.
The language must exist in the /lang/ directory by the according country code (en_US, de_DE, …).
Otherwise, the fallback language will be used.

Fallback Language

```yml
language:


fallback-language: ‘en_US’




```

The fallback language serves as default language for all users. If the client language setting
is enabled but no file for a client language is present the fallback language will be used instead.

The input value is a string that refers to the name of the language file in the /pathfinder/lang/ directory.

Data Storage

Type

```yml
database:


type: SQLITE




```

Describes the way data is supposed to be stored by the plugin.
The following values are possible:
- IN_MEMORY - No data will be stored persistently. As soon as the server stops or reloads, all data is gone and cannot be restored. This might be preferred for minigames.
- YAML - A flatfile based yaml database. Each roadmap/visualizer/playerdata will be stored as single .yml file.
- SQLITE - An embedded SQLite .db file. Data is stored in a file but accessible via SQL.
- REMOTE_SQL - A remote SQL database system like MySQL or MariaDB.

For further configuration for each type check out the subsections below.

Embedded SQL Systems

```yml
database:



	embedded-sql:
	file: ‘pluginsPathFinderdatadatabase.db’








```

Specify the file and directory for your embedded database file. You can use a shared file for multiple
servers and plugin instances, but keep in mind that the plugin currently only works with cached data.
Creating an object on one server will create a record in the database, but not on another server as long
as the other server hasn’t been restarted.

Remote SQL Systems

```yml
database:



	remote-sql:
	dialect: MYSQL
jdbc-url: “jdbc:mysql://localhost/”
username: root
password: KeepItSecretKeepItSafe








```

Dialect
Specify a SQL dialect that fits your database. You may want this to match the SQL implementation
of your jdbc url.
Examples: MYSQL, H2, POSTGRES, MARIADB

JDBC-URL
Specify URL with configuration for your database.

Username & Password
Credentials. Specify these even if they’re included in jdbc-url already.

Navigation

Require Discovery

```yml
navigation:


require-discovery: false




```

Set this to true if the discovery of a group is mandatory for all nodes in this group to pass by in
path navigation. Meaning, if a path crosses a node of a group that has not been discovered and the
setting requires groups to be discovered first, no path will be available to the player.

Find Location

```yml
navigation:



	find-location:
	max-distance: 20.0








```

Set the maximum distance to any near node when connecting the target location of /findlocation <location> to the graph.
Insert a negative value to disable any distance limitation.

Nearest Location Solving

Algorithm

```yml
navigation:



	nearest-location-solver:
	algorithm: RAYCAST








```

Define an algorithm to find the nearest node to a certain location.
- SIMPLE: Finds the nearest node.
- RAYCAST: Sends multiple raycasts to find the nearest node that is not obstructed by walls.

Configuration for Simple Solver

```yml
navigation:



	nearest-location-solver:
	
	simple-config:
	connection-count: 1












```

The simple solver generates a node and connects it to a certain count of close nodes. Specify the amount of
connections with the connection-count property.
The simple solver can create impassible connections due to its simple approach. If you require an
algorithm that tries to avoid obstructed connections, check out RAYCAST.

Configuration for Raycast Solver

```yml
navigation:



	nearest-location-solver:
	
	raycast-config:
	raycast-count: 10
start-location-direction-weight: 1.0
scope-location-direction-weight: 0.0
block-collision-weight: 10000.0












```

Specify properties for the raycast solver.

<div style=”width: 200px”>Property</div> | Description

|--| ——
| raycast-count | The algorithm finds the n nearest nodes and sends a raycast to each. Set the amount of nodes.
| start-location-direction-weight | If nodes in the players view direction should be preferred. A value of “1” means that a node counts as 1 block closer to the player if it is in its view direction.
| scope-location-direction-weight | If the node location direction should have an effect on its closeness to the player. Similar to start-direction-weight but for nodes instead of player.
| block-collision-weight | Each block between the player/a node and another node will count as the given amount of distance in blocks. Default of 10.000 means that two blocks between a player and a node will count as a distance of 20.000 blocks. While another node that is further away from the player but not obstructed will have 0 extra weight and will therefore be prioritized.

Require Group Permissions

```yml
navigation:


require-all-group-permissions: true




```
This setting decides whether a player has to have all permissions of all groups of a node
or just one matching permission. True means all, so the permission query is linked by AND
operator. False means OR, so the player has to match only one permission node.

Require Group Navigability

```yml
navigation:


require-all-groups-navigable: true




```

This setting decides whether all groups of a node have to be navigable to make it navigable
or just one. True means that all groups have to be navigable.

Require Group Discoverability

```yml
navigation:


require-all-groups-discoverable: true




```

This setting decides whether all groups of a node have to be discoverable to make it discoverable
or just one. True means that all groups have to be discoverable.

Distance Policy

```yml
navigation:


distance-policy: LARGEST




```

These settings decide, which node group find distance applies to the node.
- LARGEST: the group with the largest find distance applies
- SMALLEST: the group with the smallest find distance applies
- NATURAL: the first group applies. (later groups might be sortable with weights)

Modules

```yml
module-config:


discovery-module: true
navigation-module: true




```

Activates the according module and all included commands, listeners and logic.
If a module is not required at all you may want to turn it off to improve performance.
For example, the discovery module has to check every little player movement and if the player moved
into reach of a discoverable group. By disabling the module, this extra step (which is called
hundreds of times a second) will be skipped.

Version String

`yml
version: "3.0.0"
`

The version string specifies if the config file is up-to-date. Leave it as is so that the
plugin can recognize outdated configs and generate updated versions.

 # Effects

What is NBO and how does it work

NBO files are made to serialize and deserialize objects which stand in relation to each other.
It is pretty similar to JSON and NBT and stands, almost like NBT, for “Named Binary Objects”.

```
<include “some_other_file.nbo”>
<with Effect as de.cubbossa.effects.EffectPlayer>
<with Particle as de.cubbossa.effects.ParticlePlayer>
<with Sound as de.cubbossa.effects.SoundPlayer>


	sound := Sound{
	sound: “minecraft:entity.firework_rocket.blast”,
volume: 1f,
pitch: 1f





}


	effect := Effect{
	dalay_0: […]
delay_20: [


&sound, # <—- reference to previously declared sound object
Sound{sound: “minecraft:entity.firework_rocket.blast”, volume: 0.5f, pitch: 1.4f}




]






}

The structure of the file divides into includes, imports and objects. You can imagine it to be a table of objects, each object with its corresponding key. If an object can be made out of other objects, like in the example above, you can reference the object and insert it by using the ‘&’ symbol and the key of the previously declared object.
Keep in mind, that the file will be read from top to bottom, you can therefore never reference an object that has not yet been declared or included from another file.

Includes are references to other files, which are loaded first and whose results are then stored in the ‘table’ mentioned earlier. This means, you can reference any object that you declared in an included file. This also accounts for imports. You can move all your imports to an imports.nbo file and start every other file with <includes “imports.nbo”>.

Imports are formatted like in this example: <with SomeShortName as some.pretty.long.package.and.class.name>.
It can be understood as an alias. As you can see in the example above, Sound Objects are declared with Sound{attributes…}. To make sure, that the applications can interpret the sound as an actual code object, you have to tell it which Sound is meant. This has to be done with an import.

## Which objects are possible?

In context of this plugin, the following imports are valid, where the alias after “with” can be named however you like:
`
<with ActionBar as de.cubbossa.pathfinder.serializedeffects.effects.ActionBarPlayer>
<with Cooldown as de.cubbossa.pathfinder.serializedeffects.effects.Cooldown>
<with Effect as de.cubbossa.pathfinder.serializedeffects.effects.EffectPlayer>
<with Message as de.cubbossa.pathfinder.serializedeffects.effects.MessagePlayer>
<with ParticleLine as de.cubbossa.pathfinder.serializedeffects.effects.ParticleLinePlayer>
<with Particle as de.cubbossa.pathfinder.serializedeffects.effects.ParticlePlayer>
<with ResetActionBar as de.cubbossa.pathfinder.serializedeffects.effects.ResetActionBar>
<with ResetTitle as de.cubbossa.pathfinder.serializedeffects.effects.ResetTitle>
<with Sound as de.cubbossa.pathfinder.serializedeffects.effects.SoundPlayer>
<with Title as de.cubbossa.pathfinder.serializedeffects.effects.TitlePlayer>
<with WorldEffect as de.cubbossa.pathfinder.serializedeffects.effects.WorldEffectPlayer>
`

Each of these objects plays an effect to a player. For example, the Message object will send the player a certain message. Which message to send has to be defined as parameter, like so: Message{text: ‘<green>You have been notified about something.</green>’}

Here are all types of effect players with their parameters explained:

<table>
<tr> <th>Type</th> <th>Example</th> <th>Description</th></tr>
<tr> <td>ActionBar</td> <td>

```
ActionBarPlayer {

text: ‘<red>Some <msg:example></red>’

}

</td> <td>Plays an action bar with the provided text. All minimessage tags are possible, as well as the message tags from the language files.</td></tr>
<tr> <td>Cooldown</td> <td>

```
Coolown {


ticks: 10






}

</td> <td>Sets a cooldown for the parent effect, so that the next call on the effect will only appear after x ticks have passed.</td>
</tr>
<tr> <td>Effect</td> <td>

```
Effect {

delay_0: [&soundEffect, &cooldown, ActionBar {text: ‘example’}]
delay_10: &otherSoundEffect, &particleEffect

}

</td> <td>Combines multiple effects with delay if required. Name each attribute ‘delay_’ + ticks to wait and then add all the required effects to the list.</td>
</tr>
</table>

And now?

The names of some view effects are reserved for the plugins use. For example, the effect ‘discover’ will always be called when a player discoveres a discoverable location ingame. You can now change everything so that the discovering has the effect that appeals most to you.

 # Translations

All messages of the plugin are read from a language file.
Special is, that translations also include styling, hovering actions and click actions.

This is made possible with the [MiniMessage](https://docs.adventure.kyori.net/minimessage/format.html) text format.
It replaces the old chat component system (“{text: …}”) with easy to use xml tags.

A translation message of

`<gray><red>This is</red> an example text.</gray>`

will look like this:

This is an example text.

Keys

Every message has its unique key. The plugin does not refer to the message content but only says
“send the player a message with translation key ‘pathfinder.command.find.target_reached’”.
Then the translation modules job is to load the translation that you provided in the loaded language file.
It replaces all xml tags and then sends the beautifully formatted message to the player.

This comes in handy later, as you can embed messages within others by using their key.

```yml
some:



	example:
	message: ‘My message key is “some.example.message”.’








```

Styles

The look of an app is something that is something that should not be dependent on the translations.
What if you made a very neat style in your en_US.yml translation file and now it comes to you that you’d have
to insert all those tags in the other translation files?

Ok fine, grid your teeth for once.

But what if you have just finished modifying 5 language files and then your friends say: ‘Oh i hate the color green,
can you please make it purple?’

You could either search for better friends or you could modify all 5 language files again.

… or you use styles :D

Styles are tag definitions in a separate file.

Like so:

```yml
# styles.yml

# blueish colors
main: “<#6569EB>”
main_light: “<#A5A7F3>”
main_dark: “<#383EE5>”
```

These definitions can then be used anywhere else, like in your translations:

```yml
some:



	example:
	message: ‘<main>This message uses styles and <main_light>Highlights’








```

::: tip
You do not have to close tags.

`<green>Example` is a valid message.

But keep in mind that it adds quite a bit of readability, especially for those that are used to xml and html, where closing tags are obligatory.
::

Placeholders

MiniMessage offers a variety of placeholders. Check out their wiki for a detailed overview.

PathFinder adds some global placeholders and also some conditional placeholders that only work within the specified message.

Global Placeholders

<table>
<tr><th>Tag</th> <th>Description</th></tr>
<tr><td>

<ins:[message-key]>

</td> <td>

Inserts the message of the given message key as raw string into this message before parsing. If you insert a message with an open tag, this tag will also apply to the following string.

Example:
```yml
message:


rainbow: ‘<rainbow>’
rainbow2: ‘<rainbow></rainbow>’
inserted: ‘—> <ins:message.rainbow>I am rainbow-colored’
inserted2: ‘—> <ins:message.rainbow2>I am NOT rainbow-colored’




```

</td></tr>
<tr><td>

<msg:[message-key]>

</td> <td>

Inserts the message of the given message key as already parsed component. It will not bleed into the actual message.

Example:
```yml
message:


prefix: ‘<main>MyPlugin</main> <dark_gray>|</dark_gray> <gray>’
example1: ‘<ins:prefix> Example 1’
example2: ‘<msg:prefix> Example 2’




```

Results:
<div style=”background-color: #000000dd; padding: 12px; border-radius: 5px; color: white”>
MyPlugin | Example 1

MyPlugin | Example 2
</div>

</td></tr>
</table>

Per Player Languages

This feature is not yet implemented but will come soon. Personalized languages will only work with the
client language or with an addon that defines a players’ language. Like if you have a custom language setting on
your server, you can feed it to PathFinder and PathFinder.

 <script>
export default {

	mounted () {
	this.$router.push(‘/getting_started/introduction’)

}

}
</script>

 # Guide

This guide is a work-along guide to set up a roadmap for a town with discoverable points
of interest and search terms for proper navigation.

Your players will be able to find the shortest path to any location within your roadmap easily.

If you have any problems with the plugin, check out [our discord server](https://discord.gg/wDecCCRXFv) and ask for help!

Preparations

There is not much to do. [Install the plugin](/getting_started/installation.html) first and start up your server.
In your plugins folder a directory with name “PathFinder” will appear. It contains all data and configuration files.

To get started, the default [configuration](/configuration/config.html) should be sufficient, but feel free to
have a look at it and change the settings to your liking.

Join your server and follow along with the steps below.

Roadmap

First of all, you may want to create a RoadMap. RoadMaps are bundles of waypoints and connecting
edges. Choose one RoadMap for one Region that is logically separated. For example, create one
RoadMap for a maze minigame in your lobby and a separate one for your RPG map.

Do this with the command below, where key is anything that fits your context most.
<CmdLine>

/rm create
<CmdArg :index=”0” type=”nskey” label=”key”></CmdArg>

</CmdLine>

For the sake of this tutorial, I will use the name “town”.
<CmdLine>

/rm create
<CmdArg no-wrapper :index=”0” type=”nskey” label=”town”></CmdArg>

</CmdLine>

Edit Mode

Now that we successfully created our RoadMap, lets jump right into the edit mode and add some
waypoints.

Do this by entering
<CmdLine>
/rm editmode
<CmdArg no-wrapper :index=”0” type=”nskey” label=”pathfinder:town”></CmdArg>
</CmdLine>

You will notice, that parts of your hotbar have changed to a hotbar menu.
We will use this menu to create and modify waypoints, edges and nodegroups.

Create Waypoints

Let’s use the node tool to create a waypoint. To do this, select the node tool and right click any
block. The location of the clicked block will be used as waypoint position and a green player head
appears.

Let’s place some more. You can also remove them by left-clicking.

![first_nodes](../images/guide_01_first_nodes.png)

Create Edges

Once that is done, you may want to connect them with edges.
Select the edge tool and right-click any waypoint. You then have started the connect-mode.
Click a second waypoint and a connection has been made.

You will notice that a connection is represented with particles, fading from red to blue.
This indicates the direction of the edge. Players can only ever move from red to blue.

Add a second edge in the opposite direction to make it bidirectional

::: tip
You may not need many directional edges. Left-click once into the air to toggle the edge tool.
Now every new edge will be bidirectional automatically.
::

![first_edges](../images/guide_02_first_edges.png)

Delete Edges

Every edge comes with an edge handle for each direction. Edge handles are orange player heads and
clickable, just like waypoints. Left-click an edge handle with your edge tool to remove a connection
between two waypoints.
Left-click a waypoint instead, if you want to remove all connections going FROM this waypoint.

Defining Node Groups

Well, there we have our graph. But it cannot do much yet.
Let’s add some functionality.

Nodegroups are modifiers for multiple waypoints.
Assign a group to make a waypoint findable, discoverable, add a permission check and more.
If a group applies to multiple waypoints, the behaviour of all contained waypoints can be
changed by altering the group.

Use the following command to create a new group.
<CmdLine>

/nodegroup create
<CmdArg :index=”0” type=”nskey” label=”group-name”></CmdArg>

</CmdLine>

I will call my tutorial group “target”, because my group shall be navigable when using /find
<CmdLine>

/nodegroup create
<CmdArg :index=”0” noWrapper type=”nskey” label=”target”></CmdArg>

</CmdLine>

Let’s see if our group is available:
<CmdLine>/nodegroup list</CmdLine>

And indeed, our group was successfully created.

![img.png](../images/img.png)

To add a waypoint to a group,s elect the “Assign Group” tool and right-click the according
waypoint. A menu will open up that contains all nodegroups. Choose your nodegroup.
Immediately, the waypoint will turn blue and the name of the group will appear above it.

This might be misleading, because the word above is actually not the name of the group, but
the list of all search terms that describe this waypoint. This means, that our waypoint is now
findable when using the search term “target”.

![apply group](../images/guide_03_apply_group.png)

Add Search Terms

To add more search terms or remove the default one, use the following commands:

	<CmdLine>
	/nodegroup search-terms add|remove
<CmdArg :index=”0” type=”nodegroup” label=”group”></CmdArg>
<CmdArg :index=”1” type=”string” label=”terms”></CmdArg>

</CmdLine>

You may want to join your search terms with a comma, like so:
<CmdLine>
/nodegroup search-terms add|remove
<CmdArg :index=”0” noWrapper type=”nodegroup” label=”pathfinder:target”></CmdArg>
<CmdArg :index=”1” noWrapper type=”string” label=”findme,freecookies”></CmdArg>
</CmdLine>

![search_terms](../images/guide_04_search_terms.png)

Visualizers

Before we can start to find our group, we may want to create a path visualizer.
As the name already indicates, a path visualizer will create any kind of visualization
for the shortest path to our target.
This can practically be anything from particles to a villager that shows you the way or
a compass in hand that always points into the right direction.

There are some default visualizers that come with the plugin by itself, but developers
are highly encouraged to try and implement some by themselves and share them with the community! :D

Create a Visualizer

To create a visualizer, we first have to choose a type.
To keep things simple, we will use a particle visualizer.

<CmdLine>
/visualizer create
<CmdArg :index=”0” type=”vis-type” label=”type”></CmdArg>
<CmdArg :index=”1” type=”string” label=”name”></CmdArg>
</CmdLine>
<CmdLine>
/visualizer create
<CmdArg :index=”0” noWrapper type=”vis-type” label=”pathfinder:particle”></CmdArg>
<CmdArg :index=”1” noWrapper type=”string” label=”hearts”></CmdArg>
</CmdLine>

Once we created our first visualizer, lets assign it to our roadmap and check out how it looks.

<CmdLine>
/roadmap edit
<CmdArg :index=”0” noWrapper type=”roadmap” label=”pathfinder:town”></CmdArg>
visualizer
<CmdArg :index=”1” noWrapper type=”vis” label=”pathfinder:hearts”></CmdArg>
</CmdLine>

We can use the /find command to start a navigation from our current location to the first node
that matches the according search-term.

<CmdLine>
/find
<CmdArg :index=”0” noWrapper type=”string” label=”target”></CmdArg>
</CmdLine>

Et voilà, our first path appears.

![path](../images/guide_05_find.png)

I will quickly build a more complex setup to show that /find will actually use the shortest path.

![shortest path](../images/guide_06_shortest_path.png)

Changing particles

You can change the settings of a visualizer all to your likings. Have a closer look at the
pages of this wiki if you want a detailed list of all properties and how they affect the outcome.

To end this short guide to get started with the plugin, I will set the particles for our
visualizer to actual hearts.

<CmdLine>
/visualizer edit particle
<CmdArg :index=”0” noWrapper type=”vis” label=”pathfinder:hearts”></CmdArg>
particle
<CmdArg :index=”1” noWrapper type=”nskey” label=”minecraft:hearts”></CmdArg>
</CmdLine>

 # Installation

Dependencies

To get started, you first require to install the following dependencies:

	[ProtocolLib](https://www.spigotmc.org/resources/protocollib.1997/) (Make sure to use the appropriate version)

	Thats it for now :D

::: tip
While the last Minecraft is quite new, ProtocolLib might not have released
an according version. Follow their instructions about development builds, which
are not quite as save to use but mostly work.
This also applies to ProtocolLib for 1.19 at the moment.
::

First launch

With all dependencies installed you are good to go and run your server.
If the plugin is listed in /pl, it has successfully been started.

You will find, that no roadmaps, visualizers, nodegroups or playerdata exist yet,
which is fine. You can discover the commands by yourself or read more in the wiki.

Backups and Data-Reset

To reset your data to the initial point, stop your server and delete the data directory within
the PathFinder directory in your plugins folder.
Assuming that you use a local datastorage (yml, sqlite), this will clear all
data. For remote datastorages (mongodb, mysql) you need to delete the data in the
database manually.

To backup a state of the plugin, you have to disable the plugin by stopping the server.
Then you can put, exchange or modify the local data and start the server.
Make sure not to break relations between objects. For example, a visualizer
could reference another visualizer as child. Deleting the child in the raw datastorage will cause
problems while loading the parent visualizer.

 ![Banner](../images/banner.png)

PathFinder - Introduction

What is the PathFinder Plugin?

The PathFinder Plugin is an extension for your Minecraft server. It allows your users to find shortest paths across
mazes, towns or even whole maps. Also, it can be configured to make points of interest discoverable, so that a player
first has to find a location once on his or her own and then can use the navigation functionality.

The calculated shortest path can be visualized in a variety of ways by default. If these visualizer types are not
sufficient for your project, new visualizer types can easily be added via developers API as extension to PathFinder.

![Example Path](../images/path_example.png)
Example path through a version of hogwarts that we built some time ago.

How does it work?

To solve problems like the finding of the shortest path across a town map or the navigation of a mob in a video game,
some mathematical steps are required. But before lulling you with interesting background information, lets talk about
that part that affects the usage of the plugin.
Navigation problems are mostly based on a web-like structure like a roadmap, a routing like the internet or the whole
earth like in Google Maps.
This structure is called a graph. Every intersection of so called edges on this graph is called a node.

![example graph](https://upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Directed_acyclic_graph.svg/220px-Directed_acyclic_graph.svg.png)
[Source](https://upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Directed_acyclic_graph.svg/220px-Directed_acyclic_graph.svg.png)

To find the shortest path on a graph, several algorithms exist and are automatically computed by the plugin.
(You may want to think it through, just taking every possible route and comparing their length will quickly become a
tremendous amount of calculations to do)
What you as administrator have to do to use this plugin is to create this exact graph in your minecraft world.
PathFinder offers some editing tools to easily define nodes, edges, edge weights (steeper or cobbled roads take longer),
directions (one way roads), locations (by packing nodes to groups).

Background

Graph theory is a topic that deals with all kinds of problems regarding graphs.

 _static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

